Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 265(Pt 1): 130954, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38499125

RESUMO

Designing multifunctional wound dressings is a prerequisite to prevent infection and stimulate healing. In this study, a bilayer scaffold (BS) with a top layer (TL) comprising 3D printed pectin/polyacrylic acid/platelet rich fibrin hydrogel (Pec/PAA/PRF) and a bottom nanofibrous layer (NL) containing Pec/PAA/simvastatin (SIM) was produced. The biodegradable and biocompatible polymers Pec and PAA were cross-linked to form hydrogels via Ca2+ activation through galacturonate linkage and chelation, respectively. PRF as an autologous growth factor (GF) source and SIM together augmented angiogenesis and neovascularization. Because of 3D printing, the BS possessed a uniform distribution of PRF in TL and an average fiber diameter of 96.71 ± 18.14 nm was obtained in NL. The Young's modulus of BS was recorded as 6.02 ± 0.31 MPa and its elongation at break was measured as 30.16 ± 2.70 %. The wound dressing gradually released growth factors over 7 days of investigation. Furthermore, the BS significantly outperformed other groups in increasing cell viability and in vivo wound closure rate (95.80 ± 3.47 % after 14 days). Wounds covered with BS healed faster with more collagen deposition and re-epithelialization. The results demonstrate that the BS can be a potential remedy for skin tissue regeneration.


Assuntos
Fibrina Rica em Plaquetas , Sinvastatina/farmacologia , Sinvastatina/metabolismo , Pectinas/farmacologia , Pectinas/metabolismo , Pele/metabolismo , Impressão Tridimensional
2.
J Biomater Sci Polym Ed ; 35(6): 823-850, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38300323

RESUMO

Polymethyl methacrylate (PMMA) bone cement is commonly used in orthopedic surgeries to fill the bone defects or fix the prostheses. These cements are usually containing amounts of a nonbioactive radiopacifying agent such as barium sulfate and zirconium dioxide, which does not have a good interface compatibility with PMMA, and the clumps formed from these materials can scratch metal counterfaces. In this work, graphene oxide encapsulated baghdadite (GOBgh) nanoparticles were applied as radiopacifying and bioactive agent in a PMMA bone cement containing 2 wt.% of vancomycin (VAN). The addition of 20 wt.% of GOBgh (GOBgh20) nanoparticles to PMMA powder caused a 33.6% increase in compressive strength and a 70.9% increase in elastic modulus compared to the Simplex® P bone cement, and also enhanced the setting properties, radiopacity, antibacterial activity, and the apatite formation in simulated body fluid. In vitro cell assessments confirmed the increase in adhesion and proliferation of MG-63 cells as well as the osteogenic differentiation of human adipose-derived mesenchymal stem cells on the surface of PMMA-GOBgh20 cement. The chorioallantoic membrane assay revealed the excellent angiogenesis activity of nanocomposite cement samples. In vivo experiments on a rat model also demonstrated the mineralization and bone integration of PMMA-GOBgh20 cement within four weeks. Based on the promising results obtained, PMMA-GOBgh20 bone cement is suggested as an optimal sample for use in orthopedic surgeries.


Assuntos
Cerâmica , Grafite , Nanocompostos , Polimetil Metacrilato , Silicatos , Humanos , Ratos , Animais , Cimentos Ósseos , Vancomicina/farmacologia , Osteogênese , Teste de Materiais
3.
Int J Pharm ; 653: 123931, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38387821

RESUMO

Despite the advances in medicine, wound healing is still challenging and piques the interest of biomedical engineers to design effective wound dressings using natural and artificial polymers. In present study, coaxial electrospinning was employed to fabricate core-shell nanofiber-based wound dressing, with core composed of polyacrylamide (PAAm) and shell comprising 0.5 % solution of L-Arginine (L-Arg) in aloe vera and keratin (AloKr). Aloe vera and keratin were added as natural polymers to promote angiogenesis, reduce inflammation, and provide antibacterial activity, whereas PAAm in core was used to improve the tensile properties of the wound dressing. Moreover, L-Arg was incorporated in shell to promote angiogenesis and collagen synthesis. The fiber diameter of PAAm/(AloKr/L-Arg) core-shell fibers was (93.33 ± 35.11 nm) with finer and straighter fibers and higher water holding capacity due to increased surface area to volume ratio. In terms of tensile properties, the PAAm/(AloKr/L-Arg) core-shell nanofibers with tensile strength and elastic modulus of 2.84 ± 0.27 MPa and 62.15 ± 5.32 MPa, respectively, showed the best mechanical performance compared to other nanofibers tested. Furthermore, PAAm/(AloKr/L-Arg) exhibited the highest L-Arg release (87.62 ± 3.02 %) and viability of L929 cells in vitro compared to other groups. In addition, the highest rate of in vivo full thickness wound healing was observed in PAAm/(AloKr/L-Arg) group compared to other groups. It significantly enhanced the angiogenesis, neovascularization, and cell proliferation. The prepared PAAm/(AloKr/L-Arg) core-shell nanofibrous dressing could be promising for full-thickness wound healing.


Assuntos
Aloe , Nanofibras , Angiogênese , Cicatrização , Polímeros , Arginina , Queratinas
4.
Int J Biol Macromol ; 255: 128198, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37992930

RESUMO

Multi-layered wound dressings can closely mimic the hierarchical structure of the skin. Herein, a double-layer dressing material is fabricated through electrospinning, comprised of a nanofibrous structure as a healing-support layer or the bottom layer (BL) containing pectin (Pec), soy protein isolate (SPI), pomegranate peel extract (P), and a cellulose (Cel) microfiber layer as a protective/monitoring layer or top layer (TL). The formation of a fine bilayer structure was confirmed using scanning electron microscopy. Cel/Pec-SPI-P dressing showed a 60.05 % weight loss during 7 days of immersion in phosphate buffered solution. The ultimate tensile strength, elastic modulus, and elongation at break for different dressings were within the range of 3.14-3.57 MPa, 32.26-36.58 MPa, and 59.04-63.19 %, respectively. The release of SPI and phenolic compounds from dressings were measured and their antibacterial activity was evaluated. The fabricated dressing was non-cytotoxic following exposure to human keratinocyte cells. The Cel/Pec-SPI-P dressing exhibited excellent cell adhesion and migration as well as angiogenesis. More importantly, in vivo experiments on Cel/Pec-SPI-P dressings showed faster epidermal layer formation, blood vessel generation, collagen deposition, and a faster wound healing rate. Overall, it is anticipated that the Cel/Pec-SPI-P bilayer dressing facilitates wound treatment and can be a promising approach for clinical use.


Assuntos
Nanofibras , Punica granatum , Humanos , Nanofibras/química , Proteínas de Soja/química , Celulose/química , Pectinas/farmacologia , Cicatrização , Antibacterianos/uso terapêutico , Bandagens , Aceleração
5.
Int J Biol Macromol ; 258(Pt 1): 128917, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38134992

RESUMO

Critical sized craniofacial defects are among the most challenging bone defects to repair, due to the anatomical complexity and aesthetic importance. In this study, a polylactic acid/hardystonite-graphene oxide (PLA/HTGO) scaffold was fabricated through 3D printing. In order to upgrade the 3D printed scaffold to a highly porous scaffold, its channels were filled with pectin-quaternized chitosan (Pec-QCs) polyelectrolyte solution containing 0 or 20 mg/mL of simvastatin (Sim) and then freeze-dried. These scaffolds were named FD and FD-Sim, respectively. Also, similar PLA/HTGO scaffolds were prepared and dip coated with Pec-QCs solution containing 0 or 20 mg/mL of Sim and were named DC and DC-Sim, respectively. The formation of macro/microporous structure was confirmed by morphological investigations. The release of Sim from DC-Sim and FD-Sim scaffolds after 28 days was measured as 77.40 ± 5.25 and 86.02 ± 3.63 %, respectively. Cytocompatibility assessments showed that MG-63 cells had the highest proliferation, attachment and spread on the Sim containing scaffolds, especially FD-Sim. In vivo studies on a rat calvarial defect model revealed that an almost complete recovery occurred in the group treated with FD-Sim scaffold after 8 weeks and the defect was filled with newly formed bone. The results of this study acknowledge that the FD-Sim scaffold can be a perfect candidate for calvarial defect repair.


Assuntos
Quitosana , Grafite , Sinvastatina , Ratos , Animais , Alicerces Teciduais/química , Polieletrólitos , Regeneração Óssea , Osteogênese , Poliésteres , Impressão Tridimensional , Engenharia Tecidual
6.
ACS Appl Mater Interfaces ; 15(48): 55276-55286, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37990423

RESUMO

To overcome the drawbacks of single-layered wound dressings, bilayer dressings are now introduced as an alternative to achieve effective and long-term treatment. Here, a bilayer dressing composed of electrospun nanofibers in the bottom layer (BL) and a sponge structure as the top layer (TL) is presented. Hydrophilic poly(acrylic acid) (PAAc)-honey (Hny) with interconnected pores of 76.04 µm was prepared as the TL and keratin (Kr), Hny, and vascular endothelial growth factor (VEGF) were prepared as the BL. VEGF indicates a gradual release over 7 days, promoting angiogenesis, as proven by the chick chorioallantoic membrane assay and in vivo tissue histomorphology observation. Additionally, the fabricated dressing material indicated a satisfactory tensile profile, cytocompatibility for human keratinocyte cells, and the ability to promote cell attachment and migration. The in vivo animal model demonstrated that the full-thickness wound healed faster when it was covered with PAAc-Hny/Hny-Kr-VEGF than in other groups. Additionally, faster blood vessel formation, collagen synthetization, and epidermal layer generation were also confirmed, which have proven efficient healing acceleration in wounds treated with synthesized bilayer dressings. Our findings indicated that the fabricated material can be promising as a functional wound dressing.


Assuntos
Mel , Nanofibras , Animais , Humanos , Fator A de Crescimento do Endotélio Vascular/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Queratinas/farmacologia , Cicatrização , Bandagens
7.
Int J Biol Macromol ; 253(Pt 2): 126700, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37673152

RESUMO

In the current study, a core-shell nanofibrous wound dressing based on Pluronic-F127 (F127) containing 2 wt% mupirocin (Mup) core and pectin (Pec)-keratin (Kr) shell was fabricated through coaxial electrospinning technique, and the blended nanofibers were also fabricated from the same materials. The fiber diameter and specific surface area of the blended nanofibers were about 101.56 nm and 20.16 m2/g, while for core-shell nanofibers they were about 97.32 nm and 25.26 m2/g, respectively. The resultant blended and core-shell nanofibers experienced a degradation of 27.65 % and 32.28 % during 7 days, respectively. The drug release profile of core-shell nanofibers revealed a sustained release of Mup over 7 days (87.66 %), while the blended F127-Pec-Kr-Mup nanofibers had a burst release within the first few hours (89.38 % up to 48 h) and a cumulative release of 91.36 % after 7 days. Due to the controlled release of Mup, the core-shell structure significantly improved the human keratinocytes behavior, angiogenic potential and wound healing in a rat model compared to the blended structure. In conclusion, the F127-Mup/Pec-Kr core-shell nanofibrous wound dressing appears to be a promising candidate for the prevention of infection, and can potentially accelerate the recovery and healing of chronic and ischemic wounds.


Assuntos
Mupirocina , Nanofibras , Humanos , Ratos , Animais , Mupirocina/farmacologia , Nanofibras/química , Poloxâmero , Queratinas , Pectinas/farmacologia , Cicatrização , Queratinócitos
8.
Int J Pharm ; 645: 123357, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37647978

RESUMO

A multi-layered scaffold can mimic the hierarchical structure of the skin, accelerate the wound healing, and protect the skin against contamination and infection. In this study, a three-layered (3L) scaffold was manufactured through a combination of 3D printing and electrospinning technique. A top layer of polyurethane (PU) nanofibrous coating for the prevention of micro-organism penetration was created through electrospining. The middle layer was prepared through the 3D printing of Pluronic F127-quaternized chitosan-silver nitrate nanoparticles (F127-QCS-AgNO3), as the porous absorbent and antibacterial layer. A bottom layer of core-shell nanofibrous structure of F127-mupirocin/pectin-keratin (F127-Mup/Pec-Kr) for tissue regeneration and enable antibacterial activity was coated onto the middle layer. A range of techniques were applied to fully characterize the resultant structure. The average tensile strength and elastic modulus of the 3L scaffold were measured as 0.65 ± 0.08 MPa and 9.37 ± 2.33 MPa, respectively. The release of Ag ions, mupirocin (Mup), and the antibacterial activity of the dressings was investigated. According to the results, the highest rate of cell adhesion and viability, and angiogenic potential among the studied samples were related to the 3L scaffold, which was also found to significantly accelerate the wound healing.


Assuntos
Quitosana , Nanofibras , Mupirocina , Alicerces Teciduais/química , Cicatrização , Antibacterianos/farmacologia , Antibacterianos/química , Quitosana/química , Impressão Tridimensional , Nanofibras/química
9.
Biomater Adv ; 151: 213468, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37220673

RESUMO

To more closely resemble the structure of natural skin, multi-layered wound dressings have been developed. Herein, a tri-layer wound dressing was prepared containing a polyacrylamide (PAAm)-Aloe vera (Alo) sponge that had been incorporated with insulin-like growth factor-1 (IGF1) to provide a porous absorbent layer, which was able to promote angiogenesis. Alo nanofibers with multi-walled carbon nanotubes (MWCNT) were electrospun into the bottom layer to increase cell behavior, and a small film of stearic acid was put as a top layer to avoid germy penetration. In comparison to bilayer dressing, the tensile strength increased by 17.0 % (from 0.200 ± 0.010 MPa to 0.234 ± 0.022 MPa) and the elastic modulus by 45.6 % (from 0.217 ± 0.003 MPa to 0.316 ± 0.012 MPa) in the presence of Alo nanofibers containing 0.5 wt% of MWCNT at the bottom layer of Trilayer0.5 dressing. The release profile of IGF1, the antibacterial activity and the degradability of different wound dressings were investigated. Trilayer0.5 indicated the highest cell viability, cell adhesion and angiogenic potential among the prepared dressing materials. In-vivo rat model revealed that the Trilayer0.5 dressing treated group had the highest rate of wound closure and wound healing within 10 days compared to other groups.


Assuntos
Fator de Crescimento Insulin-Like I , Nanofibras , Nanotubos de Carbono , Cicatrização , Animais , Ratos , Bandagens , Fator de Crescimento Insulin-Like I/administração & dosagem , Cicatrização/efeitos dos fármacos
10.
Carbohydr Polym ; 312: 120787, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37059527

RESUMO

Three-dimensional (3D) printing technology has become an advanced approach for fabricating patient-specific scaffolds with complex geometric shapes to replace damaged or diseased tissue. Herein, polylactic acid (PLA)-Baghdadite (Bgh) scaffold were made through the fused deposition modeling (FDM) 3D printing method and subjected to alkaline treatment. Following fabrication, the scaffolds were coated with either chitosan (Cs)-vascular endothelial growth factor (VEGF) or lyophilized Cs-VEGF known as PLA-Bgh/Cs-VEGF and PLA-Bgh/L.(Cs-VEGF), respectively. Based on the results, it was found that the coated scaffolds had higher porosity, compressive strength and elastic modulus than PLA and PLA-Bgh samples. Also, the osteogenic differentiation potential of scaffolds following culture with rat bone marrow-derived mesenchymal stem cells (rMSCs) was evaluated through crystal violet and Alizarin-red staining, alkaline phosphatase (ALP) activity and calcium content assays, osteocalcin measurements, and gene expression analysis. The release of VEGF from the coated scaffolds was assessed and also the angiogenic potential of scaffolds was evaluated. The sum of results presented in the current study strongly suggests that the PLA-Bgh/L.(Cs-VEGF) scaffold can be a proper candidate for bone healing applications.


Assuntos
Quitosana , Nanocompostos , Ratos , Animais , Osteogênese , Alicerces Teciduais/química , Fator A de Crescimento do Endotélio Vascular/genética , Regeneração Óssea , Poliésteres/química , Impressão Tridimensional , Engenharia Tecidual/métodos , Porosidade
11.
Int J Biol Macromol ; 233: 123491, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36736985

RESUMO

The use of dressings is one of the most common methods for wound treatment. Since most single-layer dressings cannot mimic the hierarchical structure of the skin well, multi-layer dressings have been considered. In this study, a bilayer dressing was fabricated using a gelatin sponge layer cross-linked with sodium tripolyphosphate (Gel-STPP) and a layer of carrageenan nanofibers containing platelet-rich fibrin (Carr-PRF). Chemical interactions between the two layers were characterized by FTIR, and the microstructure was visualized by SEM. It was found that the presence of Carr-PRF nanofiber layer increased tensile strength by 12.96 % (from 0.216 ± 0.015 to 0.268 ± 0.036 MPa) and elastic modulus by 56.70 % (from 0.388 ± 0.072 to 0.608 ± 0.029 MPa) compared to Gel-STPP sponge. Gel-STPP/Carr-PRF wound dressing had a 45.76 ± 4.18 % degradability after 7 days of immersion in phosphate buffered saline (PBS). PRF-containing bilayer wound dressing was able to sustainably release growth factors over 7 days. The Carr-PRF nanofiber layer coated on Gel-STPP sponge was an ideal environment for adhesion and proliferation of L929 cells. Gel-STPP/Carr-PRF bilayer dressing outperformed the other tested samples in terms of angiogenic potential. Average wound closure was 94.21 ± 2.06 % in Gel-STPP/Carr-PRF dressing treated rats after 14 days, and based on the histopathological and immunohistochemical examinations, the Gel-STPP/Carr-PRF dressing group augmented full-thickness wound healing, keratin layer and skin appendages formation after 14 days.


Assuntos
Gelatina , Nanofibras , Ratos , Animais , Gelatina/química , Nanofibras/química , Fator A de Crescimento do Endotélio Vascular , Carragenina , Bandagens
12.
Biomater Adv ; 141: 213082, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36067641

RESUMO

Platelet-rich fibrin (PRF) is extracted from the blood without biochemical interference and, also, with the ability of a long-term release of growth factors that can stimulate tissue repair and regerenation. Here, leucocyte- and platelet-rich fibrin (L-PRF) and advanced platelet-rich fibrin (A-PRF) were extracted and utilized for the creation of nanofibers containing polyacrylamide (PAAm), PAAm / L-PRF and PAAm / A-PRP through electrospinning processing technique. The effect of the type of PRF on the physical, mechanical and biological properties of the resultant nanofiberous wound dressings are thoroughly evaluated. The results presented in the current study reveals that the fiber diameter is grealtly reduced through the utilization of L-PRF. In addition, mechanical property is also positively affected by L-PRF and the degradation rate is found to be higher compared to A-PRF group. The L929 cells proliferation and adhesion, angiogenesis potential and wound healing ability was significantly higher in PAAm/A-PRF nanofibers compared to pure PAAm and PAAm/L-PRF nanofibers owed to the release of vascular endothelial growth factor (VEGF) and platelet derived growth factor (PDGF). Overall, the utilization of L-PRF or A-PRF can improve the physical, mechanical and biological behavior of nanofiber making them an ideal candidate for wound dressings, with the emphasis on the skin tissue repair and regeneration applications.


Assuntos
Nanofibras , Fibrina Rica em Plaquetas , Resinas Acrílicas , Bandagens , Fator de Crescimento Derivado de Plaquetas/metabolismo , Fibrina Rica em Plaquetas/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
13.
Int J Biol Macromol ; 222(Pt A): 1605-1618, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36116591

RESUMO

Advanced platelet-rich fibrin (A-PRF) provides long-term release of growth factors that potentially accelerate wound healing. In this study, core-shell nanofibrous structure of polyvinyl alcohol (PVA) core and gelatin (Gel) shell containing A-PRF is fabricated through coaxial electrospinning method. PVA/(Gel/A-PRF) core-shell nanofibers had the highest porosity, specific surface area and hydrophilicity among all the studied nanofibers. PVA/(Gel/A-PRF) core-shell nanofibers with a tensile stress of 7.43 ± 0.38 MPa and an elastic modulus of 102.05 ± 9.36 MPa had higher mechanical properties than PVA/Gel/A-PRF and PVA/Gel blend nanofibers. PVA/(Gel/A-PRF) nanofibers had a 47.41 ± 1.97 % degradability over 7 days of immersion in PBS. The release of VEGF and PDGF-AB growth factors from PVA/(Gel/A-PRF) core-shell nanofibers and PVA/Gel/A-PRF blend nanofibers were evaluated. It was shown that L929 cell proliferation and adhesion on PVA/(Gel/A-PRF) core-shell nanofibers were significantly higher than other samples. Also, chicken chorioallantoic membrane (CAM) assay revealed that the highest angiogenic potential among the studied samples related to PVA/(Gel/A-PRF) sample. In vivo studies on a rat model showed wound closure for PVA/(Gel/A-PRF) group was 97.83 ± 2.03 % after 11 days. Histopathological and immunohistochemical examinations approved the acceleration of wound healing by PVA/(Gel/A-PRF) core-shell nanofiber dressing. The results strongly recommend the use of PVA/(Gel/A-PRF) core-shell nanofiber dressing for the repair of full-thickness wounds.


Assuntos
Nanofibras , Fibrina Rica em Plaquetas , Ratos , Animais , Nanofibras/química , Cicatrização , Bandagens , Álcool de Polivinil/química , Gelatina/química , Fibrina
14.
Carbohydr Polym ; 292: 119648, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35725158

RESUMO

To better mimic the structure of skin tissue, the use of a multi-layered wound dressing has been proposed. In the present study, a sponge-nanofibrous bi-layer dressing is designed. For this purpose, a chitosan/polyethylene glycol (CsPEG) sponge with advanced platelet-rich fibrin (A-PRF) was prepared as the upper layer of wound dressing, and a Cs/L-arginine electrospun nanofiber layer as the bottom layer. After physical, chemical and mechanical evaluations, the release of platelet-derived growth factor-AB (PDGF-AB), vascular endothelial growth factor (VEGF) and L-arginine were investigated. The antibacterial activity, cell viability and attachment of Bi-layer1.5 dressing (CsPEG/1.5A-PRF sponge coated with Cs/0.5 L-arginine nanofibers) were significantly higher than other dressings. Also, Bi-layer1.5 dressing increased the angiogenic potential and accelerated the wound healing, compared to other samples. Given the promising obtained results, the use of Bi-layer1.5 wound dressing with the ability to release growth factors and L-arginine is highly recommended to treat full-thickness wounds.


Assuntos
Quitosana , Nanofibras , Fibrina Rica em Plaquetas , Antibacterianos/farmacologia , Arginina , Bandagens , Biomimética , Quitosana/química , Nanofibras/química , Fator A de Crescimento do Endotélio Vascular
15.
Biomater Adv ; 134: 112541, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35525762

RESUMO

Recently, nanofibrous structures have shown great potential for a wide range of medical applications. The aim of the current study was to evaluate the wound healing process using Polycaprolactone/Keratin/Platelet-rich fibrin (PCL/Kr/PRF) fibrous scaffold fabricated through electrospinning process. A range of techniques were utilized to fully characterize the chemical, physical and biological properties of the resultant structure. Results revealed that by the addition of only 0.5%w/v PRF to PCL/Kr (PCL/Kr/0.5PRF) sample, the fibers diameter decreased from 193.93 ± 64.80 nm to 65.98 ± 14.03 nm, and the stress at break demonstrated a 18.27% increase in comparison to the PCL sample (from 2.90 ± 0.80 MPa to 3.43 ± 0.90 MPa). The PCL/Kr/0.5PRF scaffold showed more antibacterial activity against gram-positive and gram-negative bacteria than PCL/Kr sample. Based on enzyme-linked immunosorbent assays, the PCL/Kr/0.5PRF sample revealed an independent release of VEGF and PDGF for 7 days. Cell viability studies demonstrated non-cytotoxic nature of PRF-containing dressings. Also, chorioallantoic membrane (CAM) assay was performed to evaluate the angiogenic potential of the wound dressings. The in vivo assessments also showed that PCL/Kr/0.5PRF accelerated the wound healing process in terms of collagen deposition and the formation of skin appendages which was comparable to the normal skin. Overall, the data presented in this study greatly suggest that the PCL/Kr/0.5PRF wound dressing could be a suitable candidate for wound healing and skin regeneration.


Assuntos
Nanofibras , Fibrina Rica em Plaquetas , Antibacterianos/química , Bandagens , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Nanofibras/química , Cicatrização
16.
Macromol Biosci ; 22(7): e2200014, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35421269

RESUMO

A wound can be surgical cuts from an operation or due to accident and trauma. The infected wound, as a result of bacteria growth within the damaged skin, interrupts the natural wound healing process and significantly impacts the quality of life. Wound dressing is an important segment of the skincare industry with its economic burden estimated at $ 20.4 billion (in 2021) in the global market. The results of recent clinical trials suggest that the use of modern dressings can be the easiest, most accessible, and most cost-effective way to treat chronic wounds and, hence, holds significant promise. With the sheer number of dressings in the market, the selection of correct dressing is confusing for clinicians and healthcare workers. The aim of this research is to review widely used types of antibacterial wound dressings, as well as emerging products, for their efficiency and mode of action. In this review, introducing antibiotics and antibacterial nanoparticles as two important and clinically widely used categories of antibacterial agents is focused. The perspectives and challenges for paving the way for future research in this field are also discussed.


Assuntos
Bandagens , Qualidade de Vida , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Humanos , Infecção da Ferida Cirúrgica , Cicatrização
17.
Int Wound J ; 19(7): 1934-1954, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35297170

RESUMO

Wound healing is a complex process in tissue regeneration through which the body responds to the dissipated cells as a result of any kind of severe injury. Diabetic and non-healing wounds are considered an unmet clinical need. Currently, different strategic approaches are widely used in the treatment of acute and chronic wounds which include, but are not limited to, tissue transplantation, cell therapy and wound dressings, and the use of an instrument. A large number of literatures have been published on this topic; however, the most effective clinical treatment remains a challenge. The wound dressing involves the use of a scaffold, usually using biomaterials for the delivery of medication, autologous stem cells, or growth factors from the blood. Antibacterial and anti-inflammatory drugs are also used to stop the infection as well as accelerate wound healing. With an increase in the ageing population leading to diabetes and associated cutaneous wounds, there is a great need to improve the current treatment strategies. This research critically reviews the current advancement in the therapeutic and clinical approaches for wound healing and tissue regeneration. The results of recent clinical trials suggest that the use of modern dressings and skin substitutes is the easiest, most accessible, and most cost-effective way to treat chronic wounds with advances in materials science such as graphene as 3D scaffold and biomolecules hold significant promise. The annual market value for successful wound treatment exceeds over $50 billion US dollars, and this will encourage industries as well as academics to investigate the application of emerging smart materials for modern dressings and skin substitutes for wound therapy.


Assuntos
Bandagens , Pele Artificial , Humanos , Cicatrização , Materiais Biocompatíveis , Peptídeos e Proteínas de Sinalização Intercelular
18.
Int J Biol Macromol ; 204: 245-257, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35131230

RESUMO

Despite significant advances in surgery and postoperative care, there are still challenges in the treatment of wounds. In the current study, a freeze-dried chitosan (Cs)/polyvinylpyrrolidone (PVP) sponges containing platelet-rich fibrin (PRF at 1, 1.5 and 2% w/v) for wound dressing application is fabricated and fully characterized. Addition of 1% w/v of PRF to Cs/PVP (CS/PVP/1PRF) sample significantly increased the tensile strength (from 0.147 ± 0.005 to 0.242 ± 0.001 MPa), elastic modulus (from 0.414 ± 0.014 to 0.611 ± 0.022 MPa) and strain at break (from 53.4 ± 0.9 to 61.83 ± 1.17%) compared to Cs sample, and was hence selected as the optimal sample. The antibacterial activity of Cs/PVP/1PRF sponge wound dressing against E. coli and S. aureus was confirmed to be effective. Enzyme-linked immunosorbent assays revealed that the release of both VEGF and PDGF-AB from PRF powder, as well as PDGF-AB from Cs/PVP/1PRF sample was time-independent, but the release of VEGF from Cs/PVP/1PRF sample increased significantly with time. According to MTT and CAM assays, the Cs/PVP/1PRF sample significantly increased proliferation and angiogenic potential, respectively. Furthermore, in vivo studies demonstrated a 97.16 ± 1.55% wound closure for Cs/PVP/1PRF group after 14 days.


Assuntos
Quitosana , Fibrina Rica em Plaquetas , Bandagens , Quitosana/farmacologia , Escherichia coli , Povidona , Staphylococcus aureus , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA